
Journal of Sound and <ibration (1999) 225(5), 1000}1004
Article No. jsvi.1999.2238, available online at http://www.idealibrary.com on
ON PINNED AND COLLARED MEMBRANES

H. P. W. GOTTLIEB

School of Science, Gri.th ;niversity, Nathan, Queensland 4111, Australia

(Received 29 October 1998, and in ,nal form 10 February, 1999)
1. INTRODUCTION

A long time ago, Rayleigh [1, p. 350] noted that &&the "xation of the centre of
a vibrating circular membrane does not alter the pitch.'' The observation was based
on a consideration of the e!ect of raising an excitation frequency through the
lowest natural frequency of an ideal membrane. At "rst glance, this phenomenon
appears curious. One is tempted to argue along the following lines. For a mem-
brane pinned at its centre, the amplitude is zero at radial variable r"0, so the
solutions to the governing Helmholtz equation should not involve the Bessel
functions of the second kind, >

n
(kr), since these all become in"nite as r tends to

zero. Moreover, J
0
(kr) is equal to unity at r"0, so it also should not appear in the

solution. Thus the solutions should only contain Bessel functions of the "rst kind
J
n
(kr) for n*1 (for which the values are zero at r"0), and so should not be able to

reproduce the fundamental frequency of the complete circular membrane which
comes from the fundamental mode involving J

0
(kr). However, it can be deduced

that there is something wrong with this line of argument, because then the
fundamental mode would involve J

1
(kr) cosh, where h is the polar angle, and so

would have nodal radii, contradicting the absence of internal nodal curves for
a fundamental mode.

This apparent impasse is resolved by a careful consideration of the problem of an
annular membrane with small central exclusion and the behaviour of >

0
for small

argument in relation to the resulting characteristic equation, as has been analyzed
recently by Wang [2]. The pinned membrane corresponds to central core radius
tending to zero. In this paper, we elaborate on this phenomenon and also consider
the limit of a &&collared'' annular membrane with free boundary condition on its
inner rim.

2. THE PINNED CIRCULAR MEMBRANE

The radial part of the solution to the Helmholtz equation in plane polar
co-ordinates resulting from the two-dimensional wave equation for a vibrating
membrane takes the form

u
n
(r)"a

n
J
n
(kr)#b

n
Y

n
(kr), (1)
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where J
n
and>

n
are ordinary Bessel functions of the "rst and second kinds [3]. The

angular number n"0, 1, 2,2 corresponds to the angular part of the solution of
the form cos or sin of nh. In equation (1), k"u/c, where u is the radian frequency of
vibration and c is the free wave speed. For an annular membrane with "xed rims at
r"eR and r"R, the boundary conditions yield the characteristic equation to be
satis"ed by k (as in reference [2], but here with unnormalized outer radius) for the
fundamental mode (independent of h: n"0)

J
0
(kR)Y

0
(ekR)!Y

0
(kR) J

0
(ekR)"0. (2)

For small inner or core radius, i.e., small e, and analytical approximation to the
fundamental frequency may be found by using Taylor series expansions and the fact
that J @

0
"!J

1
, Y @

0
"!Y

1
, as well as series expansions for the Bessel functions

[3, 4], to obtain (cf. reference [2])

kR"j
0,1

#i, (3a)

i+
n
2

Y
0
( j

0,1
)

J
1
( j

0,1
)

1
D lne D

+

1)542890
Dln e D

, (3b)

where j
0,1

"2)40482556 is the lowest zero of J
0
. Thus, as observed explicitly by

Wang [2], there is the surprising result

kRPj
0,1

as eP0, (4)

so the fundamental frequency for a pinned circular membrane equals that of the
ordinary complete circular membrane of the same outer radius.

The parameter e actually has to be extremely small before the solution to
equation (2) approaches j

0,1
closely, because 1/ Dln eD tends to zero rather slowly as

e tends to zero. Moreover, good numerical agreement of the approximation (3a, b)
with the exact solution to equation (2) is achieved only for very small e. For
instance, even for e"10~6 , there is agreement to three signi"cant "gures only:
kR+2)52.

To see how the fundamental mode function itself behaves, it is necessary to carry
the analysis a little further. From equation (1) which vanishes on the outer rim
r"kR and equation (2), the ratio of coe$cients is

b
0
/a

0
"!J

0
(kR)/Y

0
(kR)+(n/2) (1/ Dln eD ) (5)

(where this result follows from equation (3) and the above-mentioned properties of
the Bessel functions). Thus, the coe$cient b

0
of the singular function >

0
(kR) in

equation (1) tends to zero as the core radius e tends to zero (the &&in"nitely small
coe$cient'' mentioned by Rayleigh [1, p. 350]). However, the product b

0
>

0
(ekR)

may consequently be shown to tend to the "nite limit !a
0

as e tends to zero,
consistent with the fact that the full mode function (1) vanishes on the inner
boundary. Furthermore for radial variable r not in"nitesimally near the inner
boundary, in equation (1) u

0
Pa

0
J
0
( j

0,1
r/R) as eP0 by equations (4) and (5), i.e.,

for non-zero r the fundamental mode function for in"nitesimal core tends to the
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usual fundamental mode function for the complete circle as the annular membrane
tends to the pinned case.

To understand better how this limiting behaviour manifests itself, we now
consider a point in"nitesimally close to, but not actually on, the inner boundary for
in"nitesimal core, i.e., we let r"(1#h)eR, with h'0. Then it can be shown that

u
0
((1#h)eR)/a

0
+[ln (1#h)]/ D lne D as eP0. (6)

This shows mathematically how the fundamental mode function (1) evaluated near
the inner boundary tends to zero near the in"nitesimal core.

The slope du
0
/dr near the inner core may be evaluated from equation (1) and

other properties and is found to be

du
0

dr K
r/eR

+

a
0

R
1

eD lne D
. (7)

This shows explicitly how the cross-sectional slope of the (ideal ) annular mem-
brane at its inner rim becomes in"nite in the pinned circular limit (eP0), and
explains how the annular mode function is able to approach the complete circular
mode function for all non-zero r as the core shrinks to a point. In the limit, the
mode solution is discontinuous at the origin. Of course, the linear theory no longer
actually applies since equation (7) contradicts the assumption of small de#ections
as eP0. However, the above analysis does serve to explain precisely the funda-
mental frequency result which was obtained in reference [2] as a limit within the
linear formulation.

3. THE COLLARED CIRCULAR MEMBRANE

The properties of the pinned circular membrane revealed above may seem rather
counter-intuitive. The behaviour of a complete circular membrane with "xed
perimeter, i.e., Dirichlet boundary condition

u(r)"0 at r"R (8)

might in fact be expected to be more like a membrane with excluded core if the
inner boundary was free, i.e., satis"ed the Neumann boundary condition

Lu/Lr"0 at r"eR. (9)

This corresponds to an inner massless &&collar'' free to slide orthogonally to the
plane of the unde#ected annular membrane. We now show that the behaviour of
the fundamental mode of this collared annular membrane indeed approaches that
of the complete circular membrane as the collar radius e tends to zero. (For the
fundamental mode of the complete circular membrane, it is not necessary to specify
the condition Lu/Lr"0 at the centre, as it is a consequence of the standard
solution.)

The modal function will be written here as

u
0
(r)"a

0
J
0
(Kr)#b

0
Y
0
(Kr). (10)
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The characteristic equation following from boundary conditions (8)and (9) is then

J
0

(KR)Y
1
(eKR)!Y

0
(KR) J

1
(eKR)"0. (11)

For small e, a careful tracking of orders of e eventually leads to

KR"j
0,1

#k, (12a)

k+
n
4

j2
0,1

Y
0
( j

0,1
)

J
1
( j

0,1
)
e2+4)461409e2. (12b)

Thus

KRPj
0,1

as eP0, (13)

so, as anticipated, the fundamental frequency for the collared annular membrane
approaches that of the complete circular membrane as the collar radius shrinks to
zero, and does so fairly rapidly because of the second order smallness in equation
(12b). In contrast to the pinned case of section 2 above, the approximation (12a, b)
to the exact solution to equation (11) is also very good. For instance, even with
e"0)1, the approximation (12a, b) agrees with the exact solution to equation (11) to
almost four signi"cant "gures: KR+2)448 [exact equation (11)]; 2)449 [equations
(12) ].

Further analysis shows that, for the coe$cients in the mode function (10),

b
0
/a

0
"!J

0
(KR)/Y

0
(KR)+(n/4) j2

0,1
e2 (14)

and the product b
0
Y

0
(eKR) appearing in the mode function (10) at the inner (collar)

boundary approaches zero like !(a
0
/2) j2

0,1
e2 D lne D as eP0. Thus at the collar

u
0
(eKR)Pa

0
as eP0. For any r, in (10) u

0
(r)Pa

0
J
0
( j

0,1
r/R) as eP0, i.e., the

mode function tends to the complete circle mode function as the collar shrinks to
zero. Unlike the pinned membrane case, the limiting function is continuous at the
origin, with the expected value a

0
.

The slope du
0
/dr at r"eR can be shown to be less than order e for e small. Thus

the slope tends to zero as the collar shrinks, and in the limit the centre of the
membrane is an extremum as for the complete membrane. It is therefore this nearly
closed free}"xed annular membrane which has the property that its fundamental
mode is everywhere near that of a complete circular membrane.

4. DISCUSSION

Whilst it is obvious that central pinning of a circular membrane will not a!ect
those modes having a nodal line passing through the origin [i.e. n*1 in equation
(1)], it is perhaps unexpected that pinning will not a!ect the fundamental mode
frequency, as described by Wang [2] and elaborated upon in section 2 above.
Indeed, it will not a!ect any mode since this conclusion evidently holds for the
higher circularly symmetric modes by replacing the lowest solution of equation (2)
by the higher solutions and the "rst zero j

0,1
, of J

0
by its higher order zeros j

0, s
.
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This phenomenon appears to be related to the &&in"nite capacity for pliancy'' of
an ideal membrane in relation to point e!ects. As discussed and diagrammed by
Morse [5, p. 176], unlike the case of the one-dimensional stretched string, a "nite
force acting over an in"nitesimal region of a tensioned ideal membrane produces an
inde"nitely large de#ection. Thus, the ideal membrane is able to sustain inde"nitely
large changes, and hence can adapt itself to accommodate the narrow well-like
cross-sectional modal shapes with high gradients near the origin, as found at the
end of section 2 above. There also appears to be similarity with classical billiards
containing a circular obstacle whose radius shrinks to zero so that it becomes
a point scatterer. As noted by Seba [6], since the trajectories which hit the resulting
scattering point are of measures zero, the system does not &&feel'' the point scatter.

It should be stressed that all the preceding mathematical expositions assume an
ideal membrane satisfying the linear two-dimensional constant-speed wave equa-
tion with simple boundary conditions. Whilst we are not in a position to perform
experimental work, we would expect that for a real circular membrane pinned at
the centre ("nite but very small excluded central core), the lower angle-dependent
modal frequencies and cross-sectional shapes might be reasonably close to those of
the complete circular membrane (whose modes have the origin on a nodal line).
However, the frequencies, and especially the cross-sectional mode shapes, of the
angle-independent modes of a real pinned membrane would be expected to be quite
di!erent from those of the unpinned system with an anti-node at the origin, due to
the "nite sti!ness of the membrane which would mitigate against the mathematical
&&pliancy'' mentioned above. Rayleigh [1] deduced that "xing more than one point
of an (ideal) membrane does not alter the characteristic frequency. According to the
preceding statement, we should expect that in these instances the real behaviour
would be even less like the mathematical result.

Rayleigh also deduced that the results should hold for ideal membranes of any
shape. Wang [2] dealt with regular polygonal membranes with circular core, and
con"rmed this numerically for the hexagon as the core radius shrank to zero.

Finally, we may conjecture that, because pinning is a local phenomenon, the shape
of the small excluded core should not a!ect the above results. For instance, the
calculations of reference [2] might be repeated for a small central polygonal core
similar to the outer shape, with point matching on inner as well as outer boundary.
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